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We are tasked with estimating the unknown value of the dependent variable x based upon the known values of two
explanatory variables y and z. We will define the actual value of the dependent variable x to be a function of the
estimated value of z plus an error term. We will define & to be the estimated value of the dependent variable x.
The equation for the estimated value of x is...

T=a+pry+ P2z (1)

The actual value of the dependent variable x is the estimated value of x plus an error term. Using Equation (1)
above the equation for the actual value of x where € is the error term is...

T=2T+¢€
=a+py+paz+te (2)

We will develop the mathematics for the multivariate regression equation via Ordinary Least Squares (OLS) using
the following hypothetical problem...

Our Hypothetical Problem

Our client owns a meat packing plant in the United States. We are tasked with developing a materials cost equation
given the dollar value of annual sales and the dollar value of ending inventory. Using Equation (2) above as our
guide the materials cost equation will take the following form...

Materials Cost = ae + f; Sales + 2 Ending Inventory + € (3)

The Appendix includes actual data for the U.S. Meat Packing Industry for the years 1958 through 1996. The time
series data, means and covariances are presented in Appendix A, B and C, repectively. Our multivariate regression
equation variables are as follows...

Table 1 - Regression Equation Variables

Variable | Description
X Annual materials cost (in millions of dollars)
y Annual sales (in millions of dollars)
z End of year inventory (in millions of dollars)
o Regression constant (in millions of dollars)
051 Regression coefficient for annual sales
Ba Regression coefficient for ending inventory
€ Error term

Question: Given that our client estimates annual sales to be $50 million and ending inventory to be $5 mil-
lion what is the OLS estimate of annual materials costs?

The Equations for the Sum of Squared Errors and Derivatives

The estimation error is the difference between the actual value of the dependent variable and the estimated value
of the dependent variable. Using Equations (1) and (2) above the equation for the estimation error is...

e=x—I
=z—(a+pry+ B22) (4)



Using Equation (4) above the equation for the sum of squared errors (SSE) where the variable N is the number of
observations is...
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We want to set the values of regression Equation (3) parameters «, 81 and S such that the sum of squared errors
as defined by Equation (5) is minimized. To minimize the sum of squared errors we need the derivatives of equation
(5) with respect to «, 81 and 3. The plan is to set each derivative equation equal to zero and simultaneously solve
for a, B and (.

The derivative of equation (5) with respect to « is...
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2N{ai+5ly+ﬂ22} (6)

Note that in Equation (6) above Z is the mean of the observed values of the dependent variable z, g is the mean of the
observed values of the independent variable y and Z is the mean of the observed values of the independent variable z.

The derivative of equation (5) with respect to 8 is...
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The derivative of equation (5) with respect to Sz is...
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The Equations for the Regression Coefficients

We want to minimize the sum of squared errors (SSE) so to solve for a, $; and Sz in our regression Equation (3)
we will set the derivative equations (6), (7) and (8) equal to zero and jointly solve for the three parameter values.

Setting derivative Equation (6) equal to zero the value of « is...

0SSE
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a=2— [y — Pz
To calculate the variance of the estimation error we will need an equation for a?, which is...

o = (T — 17 — Pe2)?
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Setting derivative Equation (7) equal to zero and using the value of « in equation (9) the equation for §; that

minimizes the sum of squared errors is...
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Setting derivative Equation (8) equal to zero and using the value of « in equation (9) the equation for 3 that

minimizes the sum of squared errors is...
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Solving for the Regression Equation Coefficients

We can rewrite Equations (11) and (12), respectively, as...

B1Var(y) + B2Cou(y, z) = Cov(z,y) (13)
B2Var(z) + f1Cov(y, z) = Cov(z, 2) (14)

In the system of linear equations above we have two equations and two unknowns. We can solve for 8; and 2 using
simple Algebra but we want to develop a method of solving for the betas when there are more than two equations
and two unknowns. We know from Linear Algebra that we can represent any system of N linear equations with N
unknowns as the following matrix:vector product...

Ab=¢ (15)

...where the matrix A is an N by N square matrix and the vectors b and € are both row vectors with N rows. For
our purposes the relevant matrix:vector product equation will take the following form...

a1 aiz| |b Cc1
' ’ = 16
[a2,1 a2,2] [bz} [02] ( )
We will define matrix A to be a covariance matrix where the element a; ; is the variance of the independent variable

¥y, the element ay 7 is the variance of the independent variable z and the elements a1 2 and as ; are the covariances
of the independent variables y and z. Our matrix A is therefore...

| Var(y) Cou(y,=2)
A= [C’ov(y,z) Var(z) } (17)

We will define vector b to be a row vector of beta coefficients where element b, is the beta coefficient for the
independent variable y and element by is the beta coefficient for the independent variable z. Our vector b is
therefore...

e A
b= 18
[@ (18)
We will define vector € to be a row vector of covariances where element c¢; is the covariance of the independent

variable y with the dependent variable x and the element ¢y is the covariance of the independent variable z with
the dependent variable x. Our vector € is therefore...

o= [oomtra] w

Using Equations (17), (18) and (19) above we can represent the system of linear equations (13) and (14) above as...

oy oI 5] = o] (20)

The row vector of beta coefficients is therefore the matrix:vector product of the inverse of matrix A and vector C.
Using the time series data from Appendix A, B and C the beta coefficients for our regression equation are...

51 [ Var(y) Cov(y, z) - Cou(y,x)
B2 Cov(y,z)  Var(z) Cov(z,x)
(225859160 3800172] " [196428819
| 3800172 66545 3289338

_ [ 0.000000113  —0.000006458] [196428819
~ [—0.000006458  0.000383827 3289338

[ 0.9708
_'_(i0097] 1)

Per Equation (21) above the regression coefficients 8; and fs are...

By = 0.9708 (22)
By = —6.0097 (23)



Using Equations (9), (22) and (23) and the time series data from Appendix B the regression constant « is equal
to...

a=1T— By — P27
= 27894 — (0.9708)(32239) — (—6.0097)(735)
— 1012 (24)

Residuals

A residual is defined as the differences between the estimated value of x via Equation (1) above and the actual value
of z. Residuals are captured in the moments of the error term e. Using Equations (1) and (4) above the equation
for the first moment of the distribution of the error term is...
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Using Equations (1) and (4) above the equation for the second moment of the distribution of the error term is...
- 2
E[eQ] =K (x—a—ﬂly—b’gz) ]
=E|2? 4+ a® — 20z + 2ab1y + 20522 — 2812y — 2Boxz + 261 foyz + ﬁ%yz + 6322]
=E|z? + (;vQ — 20127 — 2B2%% + 261 B2yZ + 1Y + B§z2> —2 (x — By — ﬁ2z>x

+2 <f — By — 525> By + 2 <f — B — 525> Boz — 2812y — 2Bowz + 261 Beyz + Biy* + ﬂ%zz}

g2 + 72 — 20177 — 26277 + 261292 + Biy® + B3z — <25: — 2317 — 2[322)1:

+ (26130 — 2B — 25152z>y + (25295 — 281 — 25§z>z — 21wy — 2Baz + 261 Boyz + By + ﬁ%%]
=E [gf + 2% — 2313y — 26227 + 2B1B2Y% + BrY° + B3E7 — 227 + 21T + 26227 + 2612y — 281

— 281 2% + 2B27Z — 2B1 2z — 2622% — 26, E [xy] — 2B, [mz} + 2615 [yz] + B2E {y2] + B2E {22]
- (] #) o] #) el ) (o] )] )
o (e - 52)

= Var(z) + BZVar(y) + BaVar(z) — 26,Cov(z,y) — 2BCov(z, 2) + 281 B2Cou(y, 2) (26)

Using Equation (25) above the mean of the error term e is...

mean of e = E {e] =0 (27)



Using Equations (25) and (26) above the variance of the error term e is...

oot =5[] - (s]/])’

= Var(z) + B2Var(y) + BaVar(z) — 261 Cov(x, y) — 262Cov(x, 2) + 261 f2Cov(y, 2) — 0
= Var(z) + BiVar(y) + B3Var(z) — 261Cov(x, y) — 282Cov(, 2) + 21 52Cov(y, 2) (28)

The Solution To Our Problem

Using Equations (24) and (21) above the OLS estimate of annual materials costs is...

Materials Cost = « + (31 Sales 4+ 83 Ending Inventory
= 1012 + (0.9708)(50, 000, 000) + (—6.0097)(5, 000, 000)
= 18,493,079 (29)

Using Equation (28) above and the time series data in Appendix C the variance of the error term e is...

Error variance = Var(z) + BiVar(y) + BiVar(z) — 2B1Cov(x,y) — 2B2C0v(x, 2) + 261 BCou(y, 2)
= 171,212,813 + (0.9708)2(225, 859, 160) + (—6.0097)2(66, 545) — (2)(0.9708)(196, 428, 819) — (2)(—6.0097)(3, 28
= 285,349 (30)

Using Equations (29) and (30) above the confidence interval for our estimate within two standard deviations is...

Confidence interval = 18,493,079 £ /285, 249
= 18,493,079 + 534 (31)



Appendix

A. Meat Packing Plant data for the United States from 1958 to 1996. Table data is for Standard Industrial Code
2011 and is in millions of dollars.

Year Materials Sales End Inv
1958 10230.10 11950.70  408.10
1959  9939.10 11788.40  370.10
1960  9890.80  11806.20  381.60
1961 10047.30 11916.80  395.30
1962 10508.80 12468.30 411.10
1963  10507.30 12412.60  407.80
1964 10835.90 12950.80 415.90
1965 11852.10 13882.50  435.60
1966  13015.10 15011.80  451.20
1967 13329.50 15553.70  478.00
1968  13845.70 16260.90 512.30
1969  15510.20 17940.20  524.20
1970 15711.10 18408.10  460.90
1971  15785.40 18802.40  494.40
1972 20120.10 23003.40  555.90
1973  24073.30 27311.50  681.70
1974  25090.70 28834.60  662.30
1975  27225.60 31341.80  741.80
1976  27977.00 32392.60 676.80
1977  27239.10 31208.20  700.10
1978  33963.50 38198.70  892.50
1979  38073.10 43191.30  964.60
1980 37762.50 42962.00  996.50
1981  39235.80 44570.00  908.80
1982  39048.60 44853.60  891.60
1983  37507.70  42774.60  940.80
1984 38738.30 44277.70  932.30
1985 36637.20 42553.50  856.00
1986  36680.20 42384.50  830.90
1987  40302.90 45536.60  832.20
1988  41700.60 47333.20 931.10
1989 41122.40 46542.00  929.00
1990  44462.70 51069.20  995.20
1991  43311.90 49326.20  949.20
1992  43586.40 50434.40 1054.30
1993 45735.80 53240.30 1182.70
1994  42045.70 50443.70 1104.00
1995  42456.70 51314.40 1178.60
1996 42762.60 51088.60 1125.90

B. Meat Packing Plant data (1958-1996) averages. In millions of dollars.

Materials | Sales | EndInv
Mean 27894 32239 735

C. Meat Packing Plant data (1958-1996) covariance matrix. In millions of dollars.

Materials Sales EndInv
Materials | 171212813 | 196428819 | 3289338
Sales 225859160 | 3800172
EndInv 66545




